• español
  • English
Universidad de La Laguna
  • Contact
    • Contact form
    • Phone numbers
    • riull@ull.es
  • Help and support
    • University Library
    • Information about the Respository
    • Document upload
    • Support to research
    • español
    • English
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
Universidad de La Laguna

Browse

All of RIULLCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

My Account

Login

Statistics

View Usage Statistics

Dual electro-/pH-responsive nanoparticle/hydrogel system for controlled delivery of anticancer peptide

Thumbnail
View/Open
Export Citations
MendeleyRefworks
Share
Collections
  • Instituto Universitario de Biorgánica Antonio González
Complete registry
Show full item record
Author
Díaz Díaz, David; Resina, Leonor; Esteves, Teresa; Pérez Rafael, Silvia; Hernández García, José Ignacio; Castelo Ferreira, Frederico; Tzanov, Tzanko; Bonardd, Sebastián; Pérez Madrigal, María M.; Alemán, Carlos
Date
2024
URI
http://riull.ull.es/xmlui/handle/915/42274
Abstract
An electro-chemo-responsive carrier has been engineered for the controlled release of a highly hydrophilic anticancer peptide, CR(NMe)EKA (Cys-Arg- N-methyl-Glu-Lys-Ala). Remotely controlled on demand release of CR(NMe)EKA, loaded in electro-responsive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, has been achieved by applying electrical stimuli consisting of constant positive (+0.50 V) or negative voltages (− 0.50 V) at pre-defined time intervals. In addition, after loading CR(NMe)EKA/PEDOT nanoparticles into an injectable pH responsive hydrogel formed by phenylboronic acid grafted to chitosan (PBA-CS), the efficiency of the controlled peptide release has increased approximately by a factor of 2.6. The hydration ratio of such hydrogel is significantly lower in acidic environments than in neutral and basic media, which has been attributed to the dissociation of the boronate bonds between polymer chains. Hence, the electro-controlled peptide release from PBA-CS/CR(NMe)EKA/PEDOT hydrogels, in the acidic environment of tumors, combines the effects of the oxidation and reduction of PEDOT chains on the interactions with the peptide and the carrier, with the peptide concentration gradient at the interface between the collapsed hydrogel and the release medium. Furthermore, the peptide released by electro-stimulation preserved its bioactivity assessed by promoting human prostate cancer cells death. Overall, this work is a promising attempt to develop a carrier platform for small hydrophilic anticancer peptides, which delivery rationale is synergistically regulated by the electrical and pH responsiveness of the carrier.
Web ULLTwitterFacebook
Universidad de La Laguna

Universidad de La Laguna

Pabellón de Gobierno, C/ Padre Herrera s/n. | 38200 | Apartado Postal: 456 | San Cristóbal de La Laguna, Santa Cruz de Tenerife - España | Teléfono: (+34) 922 31 90 00