La transformación integral y la convolución de Hankel de funciones y distribuciones
Autor
Rodríguez Mesa, LourdesFecha
1997Resumen
Se investiga la convergencia puntual de las integrales parciales de Hankel. Se introducen los llamados espacios de Lipschitz-Hankel y de Besov-Hankel, que son caracterizados mediante las integrales parciales de Hankel y las medias de Bochner-Riesz. Se discute la integrabilidad de las transformadas de Hankel de funciones en oportunos espacios de Lipschitz-Hankel. Se analiza el comportamiento de la transformación y la convolucion de hankel sobre distribuciones de crecimiento exponencial. Se consideran las ecuaciones de convolución hankel en espacios de funciones generalizadas de crecimiento lento y exponencial, introduciendo el concepto de hipoelipticidad para los operadores de convolución hankel y caracterizándolo a través del crecimiento de la transformada de hankel de tales operadores. Se introducen nuevos espacios de distribuciones transformables hankel, que son identificados con cierta clase de operadores que conmutan con la convolución de Hankel