Mostrar el registro sencillo del ítem

dc.contributor.authorMarichal Plasencia, Graciliano Nicolás 
dc.contributor.authorBarrera, Carlos
dc.contributor.authorMaarouf, Mustapha
dc.contributor.authorCampuzano, Francisco
dc.contributor.authorLlinas, Octavio
dc.date.accessioned2024-02-02T21:05:13Z
dc.date.available2024-02-02T21:05:13Z
dc.date.issued2023
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/35981
dc.descriptionDOI:10.3390/JMSE11040692
dc.description.abstractUnmanned surface vehicles (USVs) are increasingly used for ocean missions and services aimed for safer, more efficient, and sustainable routine operations. Path planning is a key component of autonomy addressed to obstacle detection and avoidance. As a multi-optimization nonlinear problem, it should include computational time, optimal path, and maritime traffic standard procedures. This becomes even more challenging for USV technologies propelled by harvesting ocean energy from waves and wind. Sea current state and wind conditions significantly affect the USV energy consumption becoming the path planning approach key for navigation performance and endurance. To improve both aspects, an energy-efficient new path planning algorithm approach based on AI techniques for computing feasible paths in compliance with the Convention on the International Regulations for Preventing Collisions at Sea (COLREG) rules and taking energy consumption into account according to wind and sea current data is proposed.en
dc.format.mimetypeapplication/pdf
dc.language.isoInglésen
dc.relation.ispartofseriesJournal of Marine Science and Engineering, 2023, 11, 692
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleA Comparison of Intelligent Models for Collision Avoidance Path Planning on Environmentally Propelled Unmanned Surface Vehicles
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/jmse11040692
dc.subject.keywordunmanned surface vehicles (USV)
dc.subject.keywordobstacle avoidance (OA)
dc.subject.keywordpath planning (PP)
dc.subject.keywordartificial neural network (ANN)
dc.subject.keywordrandom forest (RF)
dc.subject.keywordmultiple logistic regressor (MLR)
dc.subject.keywordsupport vector machines (SVM)


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)