Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Plata, Israel 
dc.contributor.authorMartín Lorenzo, Alba
dc.contributor.authorExpósito Márquez, Airam 
dc.contributor.authorExpósito-Izquierdo, Christopher
dc.contributor.authorCastilla Rodr´ıguez, Iván
dc.contributor.otherIngeniería Informática y de Sistemas
dc.date.accessioned2024-11-28T21:05:16Z
dc.date.available2024-11-28T21:05:16Z
dc.date.issued2023
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/40310
dc.description.abstractThls work presents a decision-support system for predictive analysis of truck arrivals, dwell times and possible congestion situations in seaport, through a methodology that encornpasses machine learning algorithn1s, data visualization tools and discrete-event simulation models. This decision-support system makes it possible to have a detailed planning of the arrival and transit times of trucks in the port to predict land congestion events; and to know in advance the needs in relation to services or stopovers, and how long each truck will be i.n the port facilities. Toe system also allows for the planning and sizing of waiting areas according to expected arrivals and dwell times of trucks in port, at the saine tilrne that it optimizes port value spaces, and reduces unnecessary journeys and associated emissions, by evaluating the relationship between the sea side and the demand in land accesses. This will eventually help to improve coexistence at1d pott-city integration between urban and heavy traffic. The system has been validated in the Port of Santander (Spain) with satisfactory results in terms of operational improvementen
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartof27th International Conference on Knowledge Based and Intelligent Information and Engineering Sytems (KES 2023)
dc.relation.ispartofseriesProcedia Computer Science 225
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleDecision-support system for the management of truck stays at seaportsen
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.identifier.doi10.1016/j.procs.2023.10.099
dc.subject.keywordSeaporten
dc.subject.keywordmachine learningen
dc.subject.keyworddata visualizationen
dc.subject.keywordsimulation modelen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)